Combining high frequency data with non-linear models for forecasting energy market volatility

نویسندگان

  • Jozef Baruník
  • Tomas Krehlik
چکیده

The popularity of realized measures and various linear models for volatility forecasting has been the focus of attention in the literature addressing energy markets’ price variability over the past decade. However, there are no studies to help practitioners achieve optimal forecasting accuracy by guiding them to a specific estimator and model. This paper contributes to this literature in two ways. First, to capture the complex patterns hidden in linear models commonly used to forecast realized volatility, we propose a novel framework that couples realized measures with generalized regression based on artificial neural networks. Our second contribution is to comprehensively evaluate multiple-step-ahead volatility forecasts of energy markets using several popular high frequency measures and forecasting models. We compare forecasting performance across models and across realized measures of crude oil, heating oil, and natural gas volatility during three qualitatively distinct periods: the pre-crisis period, the 2008 global financial crisis, and the post-crisis period. We conclude that the newly proposed approach yields both statistical and economic gains, while reducing the tendency to over-predict volatility uniformly during all the tested periods. In addition, the proposed methodology is robust to a substantial structural break induced by the recent financial crisis. Our analysis favors median realized volatility because it delivers the best performance and is a computationally simple alternative for practitioners. © 2016 Elsevier Ltd. All rights reserved. i f o g r n c d f

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment

In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...

متن کامل

Analysis of Realized Volatility in Tehran Stock Exchange using Heterogeneous Autoregressive Models Approach

Objective: The present study aims atinvestigating the behavior of realized volatility for high-frequency data of Tehran Stock Index from April28th, 2012 to August 8th, 2018. Methods: Three different types of HAR models including of HAR-RV-CJ, HAR-RV and HAR-RVJ were used to analyze the Realized Volatility. Results: The obtained results of three diverse models revealed that the estimated Reali...

متن کامل

Comparing the performance of GARCH (p,q) models with different methods of estimation for forecasting crude oil market volatility

The use of GARCH models to characterize crude oil price volatility is widely observed in the empirical literature. In this paper the efficiency of six univariate GARCH models and two methods of estimation the parameters for forecasting oil price volatility are examined and the best method for forecasting crude oil price volatility of Brent market is determined. All the examined models in this p...

متن کامل

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

Some new approaches to forecasting the price of electricity: A Study of Californian Market

In this paper we consider the forecasting performance of a range of semiand non-parametric methods applied to high frequency electricity price data. Electricity price time-series data tend to be highly seasonal, mean reverting with price jumps/spikes and timeand price-dependent volatility. The typical approach in this area has been to use a range of tools that have proven popular in the financi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2016